Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(15): 3703-3709, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38505984

RESUMO

The control of supramolecular DNA assembly through external stimuli such as light represents a promising approach to control bioreactions, and modulate hybridization or delivery processes. Here, we report on the design of nucleobase-containing arylazopyrazole photoswitches that undergo chiral organization upon self-assembly along short DNA templates. Chiroptical spectroscopy shows that the specific nucleobases allow selectivity in the resulting supramolecular DNA complexes, and UV light irradiation triggers partial desorption of the arylazopyrazole photoswitches. Molecular modeling studies reveal the differences of binding modes between the two configurations in the templated assembly. Remarkably, our results show that the photoswitching behaviour controls the self-assembly process along DNA, opening the way to potential applications as nano- and biomaterials.


Assuntos
DNA , DNA/química , Modelos Moleculares , Hibridização de Ácido Nucleico
2.
Sci Rep ; 9(1): 19407, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857596

RESUMO

Perpendicular magnetic anisotropy (PMA) ferromagnetic CoFeB with dual MgO interfaces is an attractive material system for realizing magnetic memory applications that require highly efficient, high speed current-induced magnetic switching. Using this structure, a sub-nanometer CoFeB layer has the potential to simultaneously exhibit efficient, high speed switching in accordance with the conservation of spin angular momentum, and high thermal stability owing to the enhanced interfacial PMA that arises from the two CoFeB-MgO interfaces. However, the difficulty in attaining PMA in ultrathin CoFeB layers has imposed the use of thicker CoFeB layers which are incompatible with high speed requirements. In this work, we succeeded in depositing a functional CoFeB layer as thin as five monolayers between two MgO interfaces using magnetron sputtering. Remarkably, the insertion of Mg within the CoFeB gave rise to an ultrathin CoFeB layer with large anisotropy, high saturation magnetization, and good annealing stability to temperatures upwards of 400 °C. When combined with a low resistance-area product MgO tunnel barrier, ultrathin CoFeB magnetic tunnel junctions (MTJs) demonstrate switching voltages below 500 mV at speeds as fast as 1 ns in 30 nm devices, thus opening a new realm of high speed and highly efficient nonvolatile memory applications.

3.
Sci Rep ; 8(1): 14409, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258111

RESUMO

Spin-transfer-torque magnetic random access memory (STT-MRAM) is the most promising emerging non-volatile embedded memory. For most applications, a wide range of operating temperatures is required, for example -40 °C to +150 °C for automotive applications. This presents a challenge for STT-MRAM, because the magnetic anisotropy responsible for data retention decreases rapidly with temperature. In order to compensate for the loss of thermal stability at high temperature, the anisotropy of the devices must be increased. This in turn leads to larger write currents at lower temperatures, thus reducing the efficiency of the memory. Despite the importance of high-temperature performance of STT-MRAM for energy efficient design, thorough physical understanding of the key parameters driving its behavior is still lacking. Here we report on CoFeB free layers diluted with state-of-the-art non-magnetic metallic impurities. By varying the impurity material and concentration to modulate the magnetization, we demonstrate that the magnetization is the primary factor driving the temperature dependence of the anisotropy and thermal stability. We use this understanding to develop a simple model allowing for the prediction of thermal stability of STT-MRAM devices from blanket film properties, and find good agreement with direct measurements of patterned devices.

4.
Nat Mater ; 5(9): 730-4, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16906140

RESUMO

The emerging field of spintronics explores the many possibilities offered by the prospect of using the spin of the electrons for fast, nanosized electronic devices. The effect of magnetization acting on a current is the essence of giant or tunnel magnetoresistance. Although such spintronics effects already find technological applications, much of the underlying physics remains to be explored. The aim of this article is to demonstrate the importance of spin mixing in metallic nanostructures. Here we show that magnetic clusters embedded in a metallic matrix exhibit a giant magnetic response of more than 500% at low temperature, using a recently developed thermoelectric measurement. This method eliminates the dominating resistivity component of the magnetic response and thus reveals an intrinsic spin-dependent process: the conduction-electron spin precession about the exchange field as the electron crosses the clusters, giving rise to a spin-mixing mechanism with strong field dependence. This effect appears sensibly only in the smallest clusters, that is, at the level of less than 100 atoms per cluster.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA